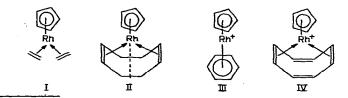
PRELIMINARY COMMUNICATION

MASS SPECTRA OF SOME CYCLOPENTADIENYLRHODIUM OLEFIN COMPLEXES

R.B. KING*


Mellon Institute, Pittsburgh, Pennsylvania (U.S.A.) and Department of Chemistry, University of Georgia, Athens, Ga. 30601 (U.S.A.) (Received May 9th, 1968; in revised form July 19th, 1968)

The mass spectra of several olefin derivatives of the metal carbonyls have been investigated^{1,2,3}. I now wish to report the mass spectra of two carbonyl-free rhodium olefin complexes of the general formula $C_5 H_5 Rh(olefin)_2$. The monoisotopic nature of rhodium permits observation of metastable ions which lend further support to proposed fragmentation schemes.

The first compound investigated was cyclopentadienyldiethylenerhodium, $C_5H_5Rh(C_2H_4)_2$ (I)⁴. Metastable ions were observed which indicated that the parent ion was converted to the bare Rh⁺ ion by the following three-step process involving successive losses of the two ethylene groups followed by the *n*-cyclopentadienyl ring:

(a) $C_5 H_5 Rh(C_2 H_4)_2^+ \frac{m^* \ 171.5}{m/e} C_5 H_5 RhC_2 H_4^+ + C_2 H_4$ $m/e \ 224 \qquad m/e \ 196$ (b) $C_5 H_5 RhC_2 H_4^+ \frac{m^* \ 144}{2} C_5 H_5 Rh^+ + C_2 H_4$ $m/e \ 196 \qquad m/e \ 168$ (c) $C_5 H_5 Rh^+ \frac{m^* \ 63.3}{2} Rh^+ + C_5 H_5$ $m/e \ 168 \qquad m/e \ 103$

The ethylene groups are thus lost stepwise much like the carbonyl groups in metal carbonyls. Indeed the rhodium ions in the mass spectrum of $C_5 H_5 Rh(C_2 H_4)_2$ correspond closely to the cobalt ions in the reported⁵ mass spectrum of $C_5 H_5 Co(CO)_2$.

*Fellow of the Alfred P. Sloan Foundation, 1967-1969.

The other cyclopentadienylrhodium diolefin derivative investigated was cyclopentadienyl-1,5-cyclooctadienerhodium, $C_5 H_5 RhC_8 H_{12}$ (II)⁶. The mass spectrum of this rhodium complex II exhibited enough metastable ions to permit elucidation of a detailed fragmentation scheme as depicted in Fig.1. Several pathways appear to be possible in going from the parent ion to the ion $C_5 H_5 Rh^+$ (*m/e* 168). The ion $C_5 H_5 Rh^+$ can then fragment to the "bare" rhodium ion Rh^+ (*m/e* 103) by cleavage of its $C_5 H_5$ ring.

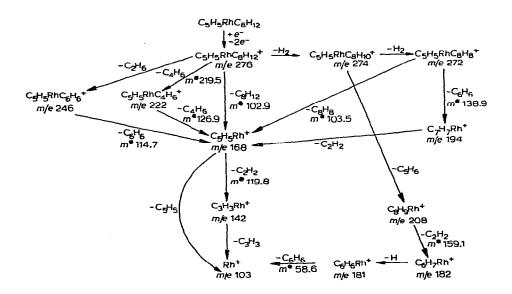


Fig.1. Fragmentation scheme of C5H5RhC8H12.

The parent ion $C_5 H_5 RhC_8 H_{12}^+$ (m/e 276) can form the ion $C_5 H_5 Rh^+$ (m/e 168) by loss of the diolefin $C_8 H_{12}$ ligand in a single step. Alternatively the parent ion can lose the elements of ethane ($C_2 H_6$ or $2CH_3$) to form the ion $C_5 H_5 RhC_6 H_6^+$ (m/e 246), apparently with structure III containing a π -complexed benzene ring. This ion can then lose its $C_6 H_6$ fragment in a further step forming the ion $C_5 H_5 Rh^+$ (m/e 168).

The parent ion $C_5 H_5 RhC_8 H_{12}^+$ (m/e 276) can also undergo dehydrogenation forming the ion $C_5 H_5 RhC_8 H_8^+$ (m/e 272)*. This ion may have a structure IV containing a π -complexed cyclooctatetraene ring. A related compound $C_5 H_5 RhC_8 H_8$ has been reported⁸. The ion $C_5 H_5 RhC_8 H_8^+$ (m/e 272) can lose a neutral $C_8 H_8$ fragment (presumably cyclooctatetraene) forming the ion $C_5 H_5 Rh^+$ (m/e 168).

Another possible route from $C_5H_5RhC_8H_{12}^+$ to $C_5H_5Rh^+$ involves the intermediate ion $C_5H_5RhC_4H_6^+$ (*m/e* 222). Metastable ions are observed corresponding to the following reactions:

^{*}Similar dehydrogenations have been noted in the mass spectra of other olefin-metal complexes with hydrogens attached to sp^3 hybridized carbon atoms which in turn are attached to an sp^2 carbon atom π -bonded to the metal atom⁷.

$$C_{5}H_{5}RhC_{8}H_{12}^{+} \xrightarrow{m^{*} 219.5} C_{5}H_{5}RhC_{4}H_{6}^{+} + C_{4}H_{6}^{-}$$

$$m/e 222$$

$$C_{5}H_{5}RhC_{4}H_{6}^{+} \xrightarrow{m^{*} 126.9} C_{5}H_{5}Rh^{+} + C_{4}H_{6}^{-}$$

$$m/e 222$$

$$m/e 168$$

There is thus some evidence that a 1,5-cyclooctadiene ligand can break down into a butadiene ligand in the mass spectrometer. This can occur by breaking the two allylic carbon-carbon bonds as indicated by dotted lines in structure II. This process is the reverse reaction to the synthesis of 1,5-cyclooctadiene by dimerization of butadiene. In addition it resembles fragmentations related to the reverse Diels-Alder reaction observed in the mass spectra of certain metal carbonyl complexes of bicyclo [2,2,1]heptadiene and dicyclopentadiene⁷.

The mass spectrum of $C_5 H_5 Rh C_8 H_{12}$ also exhibited the ion $C_8 H_9 Rh^+$ (m/e 208), possibly formed by elimination of a neutral cyclopentadiene ($C_5 H_6$) fragment from the ion $C_5 H_5 Rh C_8 H_{10}^+$ (*m/e* 274). The $C_8 H_9 Rh^+$ (*m/e* 208) ion loses an acetylene (C_2H_2) fragment giving the ion $C_6H_7Rh^+$ (m/e 182). The occurrence of this elimination process is supported by a metastable ion at m/e 159.1 (182²/208 = 159.1). The ion $C_6H_2Rh^+$ appears to undergo dehydrogenation giving $C_6H_6Rh^+$ (m/e 181) which eliminates a C_6H_6 fragment giving the "bare" Rh⁺ (m/e 103) ion. This C_6H_6 elimination process is confirmed by the presence of a metastable ion at m/e 58.6 $(103^2/181 = 58.6)$. The fact that the ion C₅H₅Rh⁺ (m/e 168) is bypassed upon further fragmentation of the ion $C_8 H_9 Rh^+$ (m/e 208) suggests that the latter ion is not $C_5 H_5 Rh C_3 H_4^+$ still containing a π -cyclopentadienyl ring.

These observations suggest that in different fragmentation modes of the parent ion of $C_5 H_5 RhC_8 H_{12}$ either the $C_5 H_5$ ring or the $C_8 H_{12}$ ring may be lost. This indicates that the fragmentation pattern of $C_5H_5RhC_8H_{12}$ in the mass spectrum is intermediate between those of typical π -cyclopentadienyl derivatives of iron, manganese, chromium, vanadium, and their heavier congeners and those of π -cyclopentadienyl derivatives of nickel and palladium such as $C_3H_5PdC_5H_5$, $C_{10}H_{12}OCH_3PdC_5H_5$, and C_5H_5 Ni $C_{13}H_{17}$. In the former cases the ligands other than π -cyclopentadienyl are lost more readily in the mass spectrum resulting in relatively high abundances of the $C_5 H_5 M^+$ ions. In the latter cases an important fragmentation pathway of the parent ion is loss of the π -cyclopentadienyl rings as C₅H₆ resulting in relatively high abundances of cyclopentadienyl-free metal ions.

I am indebted to the National Science Foundation for partial support under Grant GP-3954 of the portion of this work performed at the Mellon Institute. I am indebted to Mr. R.E. Rhodes and Mr. J.R. Boal for running these spectra on the Mellon Institutes MS-9 mass spectrometer.

REFERENCES

- 1 R.E. Winters and R.W. Kiser, J. Phys. Chem., 69 (1965) 3198.
- 2 R.B. King, J. Am. Chem. Soc., 88 (1966) 2075.
- 3 R.B. King and A. Fronzaglia, Inorg. Chem., 5 (1966) 1837.
- 4 R.B. King, Inorg. Chem., 2 (1963) 528.
 5 R.E. Winters and R.W. Kiser, J. Organometal. Chem., 4 (1965) 190.
- 6 J. Chatt and L.M. Venanzi, J. Chem. Soc., (1957) 4735.
- 7 R.B. King, unpublished results.
- 8 A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., (1962) 4821.